Section 3: Number – prime factorisations, fractions and irrationals

Exercise - Sketch Solutions

1.
$$27 = 3^{3}$$

 $147 = 3 \times 7^{2}$
 $27 \times 147 = 3^{4} \times 7^{2}$
 $= (3^{2} \times 7)^{2}$
 $= 63^{2}$

2.
$$\frac{10!}{2!4!4!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 4 \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5}{2 \times 4 \times 3 \times 2} = 10 \times 9 \times 7 \times 5$$

$$\frac{10!}{3!3!4!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5}{3 \times 2 \times 3 \times 2} = 10 \times 3 \times 4 \times 7 \times 5$$

$$\frac{10!}{2!3!5!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1} = \frac{10 \times 9 \times 8 \times 7 \times 6}{2 \times 3 \times 2} = 10 \times 9 \times 4 \times 7$$

It's reasonably straightforward to see that

$$10 \times 3 \times 4 \times 7 \times 5 > 10 \times 9 \times 7 \times 5 > 10 \times 9 \times 4 \times 7$$
, since $3 \times 4 \times 5 > 9 \times 5 > 9 \times 4$

(A slightly slicker way to do the above problem is to realise how much the three fractions have $\frac{10!}{2!3!4!}$ then $\frac{10!}{2!4!4!} = \frac{X}{4}, \frac{10!}{3!3!4!} = \frac{X}{3}$ and $\frac{10!}{2!3!5!} = \frac{X}{5}$. You then immediately see that $\frac{X}{3} > \frac{X}{4} > \frac{X}{5}$.)

3.
$$91080 = 2 \times 45540 = 2^2 \times 22770 = 2^3 \times 11385$$

= $2^3 \times 3 \times 3795 = 2^3 \times 3^2 \times 1265$
= $2^3 \times 3^2 \times 5 \times 253$
= $2^3 \times 3^2 \times 5 \times 11 \times 23$

The number of factors is $4 \times 3 \times 2 \times 2 \times 2 = 96$, of which 94 are proper factors.

The smallest proper factor of 91080 is 2 and the largest is 45540.

$$10^{20} = 2^{20} \times 5^{20}$$

The number of factors is $21 \times 21 = 441$, of which 439 are proper factors.

4. $3^2 \times 5^3$ has $4 \times 3 = 12$ factors, one is 1 and one is $3^2 \times 5^3$, leaving 10 proper factors.

The number of factors is $(m+1)\times(n+1)$, so $(m+1)\times(n+1)=12$

$$mn + m + n + 1 = 12$$

$$mn + m + n = 11$$

$$m = 1, n = 5$$

$$m = 2, n = 3$$

$$m = 3, n = 2$$

$$m = 4, n = \frac{7}{5}$$

$$m = 5, n = 1$$

There are 4 integer solutions.

 $3^3 \times 5^9$ has $4 \times 10 = 40$ factors and therefore 38 proper factors. $5 \times 7^9 \times 11$ has $2 \times 10 \times 2 = 40$ factors and therefore 38 proper factors.

$$40 = 2^3 \times 5$$

This can be factorised into:

$$5 \times 2 \times 2 \times 2$$

$$5 \times 4 \times 2$$

 8×5

$$10 \times 2 \times 2$$

$$20 \times 2$$

$$5 \times 2 \times 2 \times 2$$
 gives $2^4 \times 3 \times 5 \times 7 = 1680$

$$5\times4\times2$$
 gives $2^4\times3^3\times5=2160$

$$8 \times 5$$
 gives $2^7 \times 3^4 = 10368$

$$10 \times 2 \times 2$$
 gives $2^9 \times 3 \times 5 = 7680$

$$10 \times 4$$
 gives $2^9 \times 3^3 = 13824$

$$20 \times 2$$
 gives $2^{19} \times 3 = 1572864$

$$40 \text{ gives } 2^{39} = 549755813888$$

The smallest number with 38 proper factors is 1680.

5. The number of zeros is determined by power of 10, which is equal to the number of 2×5 that can be formed.

The number of $\times 5$ in 100! is 24: 1 for each multiple of 5 and an additional 1 for the 4 multiples of 25.

The number of $\times 2$ is much larger as there are 50 multiples of 2 and additional $\times 2$ for multiples of 4, 8, 16, 32, 64.

Therefore the number of $\times 10$ is 24 and the number of zeros at the end is 24.

6. *a*) Let the four digit integer be x and the one digit integer y x = 432y + 2

$$y = 1 \ x = 434$$

$$y = 2 x = 866$$

$$y = 3 x = 1298$$

b) The number is the smallest number that is a multiple of 2, 3, 5, 8, 13, 21, and 34 plus 1

The prime factors of those numbers are $2,3,5,2^3,13,3\times7,2\times17$

The prime factorisation of the smallest number that is a multiple of these is $2^3 \times 3 \times 5 \times 7 \times 13 \times 17 = 185640$

The number is therefore 185641.

c) Adding all the equations together, 3a + 3b + 3c + 3d = 5p

$$a+b+c+d=\frac{5p}{3}$$

As a+b+c+d is an integer, p must be a multiple of 3, and the only prime that is a multiple of 3 is 3, so p=3

$$7. \quad \frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}.$$

$$(b+d)\times(ad+bc) = abd+bcd$$

$$abd + bcd + b^2c + ad^2 = abd + bcd$$

$$b^2c + ad^2 = 0$$

$$b^2c = -ad^2$$

The following integers satisfy this

$$c = -1$$
, $b = 1$, $a = 1$, $d = 1$

This gives
$$\frac{1}{1} + \frac{-1}{1} = \frac{1 + (-1)}{2}$$
.

There are (infinitely many) other possibilities such as:

$$c = 3$$
, $d = 5$, $a = -12$, $b = 10$ giving $\frac{-12}{10} + \frac{3}{5} = \frac{-9}{15}$

8. For any real number x and integer n, $\lfloor x + n \rfloor = \lfloor x \rfloor + n$ – this is true, adding an integer to a number will result in its floor changing by that integer.

For any real numbers x and y, $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor -$ this is false. For example if x = 3.7 and y = 3.4 then $\lfloor x \rfloor = 3$ and $\lfloor y \rfloor = 3$ but $\lfloor x + y \rfloor = 7$.

For any real numbers λ and x, $\lfloor \lambda x \rfloor = \lambda \lfloor x \rfloor$ – this is false. For example if x = 1.4 and $\lambda = 3$ then $\lfloor x \rfloor = 1$, $\lambda \lfloor x \rfloor = 3$ but $\lambda x = 4.2$ and $\lfloor \lambda x \rfloor = 4$.

For any real numbers x and y, $\lfloor xy \rfloor = \lfloor x \rfloor \lfloor y \rfloor$ – this is false, take x = 1.4 and y = 3.

For any real number x, $\lfloor \lfloor x \rfloor \rfloor = \lfloor x \rfloor$ – this is true because taking the floor of a number that is already an integer (like $\lfloor x \rfloor$) will not change it.

9. a) Suppose *x* satisfies

$$[x] = x - [x]$$

Then 2[x] = x and since [x] is an integer this means that x is an integer. Therefore [x] = x and x - [x] = 0. Since [x] = x - [x], it follows that [x] = 0. Remembering that x is an integer, the only possibility is that x = 0.

b) Suppose x satisfies

$$\left\lfloor \sqrt{x} \right\rfloor = \sqrt{\lfloor x \rfloor}$$

Then $\lfloor \sqrt{x} \rfloor^2 = \lfloor x \rfloor$. This means that $\lfloor x \rfloor$ is the square of a whole number and so $n^2 \le x < n^2 + 1$ for some integer n (we can suppose that n is positive).

If $n^2 \le x < n^2 + 1$ then $n \le \sqrt{x} < \sqrt{(n^2 + 1)}$. This means that $\lfloor \sqrt{x} \rfloor = n$ and $\sqrt{\lfloor x \rfloor} = \sqrt{n^2} = n$.

Therefore the solutions of the equations are the real numbers x that satisfy $n^2 \le x < n^2 + 1$ for some integer n.

- 10. The statement is false, $a = \sqrt[4]{2}$, $b = \sqrt{2}$ is counter example. Note that $\sqrt[4]{2}$ is irrational, if it were not then its square which is $\sqrt{2}$ would be rational.
- 11. If p and q are both odd then $p^3 + pq^2 + q^3$ is odd (which it isn't). 'p odd and q even' and 'p even and q odd' lead to similar contradictions.

Therefore p and q are both even and p/q is not in 'lowest terms'.

Second part follows immediately since if $\left(\frac{p}{q}\right)^3 + \frac{p}{q} + 1 = 0$ then $p^3 + pq^2 + q^3 = 0$.

12. a)
$$\frac{1}{3+\sqrt{8}} = \frac{3-\sqrt{8}}{(3+\sqrt{8})\times(3-\sqrt{8})}$$
$$= \frac{3-\sqrt{8}}{1}$$
$$= 3-\sqrt{8}$$
b)
$$\frac{17}{100} < \frac{1}{3+\sqrt{8}} < \frac{43}{250}$$
$$\Leftrightarrow \frac{17}{100} < 3-\sqrt{8} < \frac{43}{250}$$

$$\Leftrightarrow \frac{-283}{100} < -\sqrt{8} < \frac{-707}{250}$$

$$\Leftrightarrow \frac{283}{100} > \sqrt{8} > \frac{707}{250}$$

$$\Leftrightarrow \frac{80089}{10000} > 8 > \frac{499849}{62500}$$

$$\Leftrightarrow 8.0089 > 8 > 7.997584$$

The final statement is clearly true. Since every logical step of the working worked in both directions, it follows that our original statement is also true.

c)
$$\frac{283}{100} > \sqrt{8} > \frac{707}{250}$$
 (from our working for (b))
 $\frac{283}{100} = 2.83 \quad \frac{707}{250} = 2.828$
 $2.83 > \sqrt{8} > 2.828$
 $\sqrt{8} = 2.83$ (2dp)