Year 12 Problem-Solving Course

Section 3: Number - prime factorisations and irrationals

Mathematics Admissions Test Questions

Question A from the 2007 Paper

A. Let r and s be integers. Then

$$\frac{6^{r+s} \times 12^{r-s}}{8^r \times 9^{r+2s}}$$

is an integer if

- (a) $r + s \le 0$,
- (b) $s \leq 0$,
- (c) $r \le 0$,
- (d) $r \geqslant s$.

Solution:

A: Separating out the powers of 2 and 3 we have

$$\frac{6^{r+s}\times 12^{r-s}}{8^r\times 9^{r+2s}} = 2^{(r+s+2r-2s-3r)}\times 3^{(r+s+r-s-2r-4s)} = 2^{-s}\times 3^{-4s}$$

which is an integer if $s \leq 0$. The answer is (b).

Question B from the 2012 Paper

B. Let $N = 2^k \times 4^m \times 8^n$ where k, m, n are positive whole numbers. Then N will definitely be a square number whenever

- (a) k is even;
- (b) k + n is odd;
- (c) k is odd but m + n is even;
- (d) k + n is even.

Solution:

B. We can rewrite N as

$$N = 2^k \times 4^m \times 8^n = 2^{k+2m+3n}$$

Now 2^r is a square when r is even and is not a square when r is odd. So we need

$$k + 2m + 3n = k + n + 2(m + n)$$

to be even, which is equivalent to needing k+n to be even. The answer is (d).

1 of 3 28/10/13 © MEI

Year 12 Problem-Solving Course

Question 2 from the 2010 Paper

2. For ALL APPLICANTS.

Suppose that a, b, c are integers such that

$$a\sqrt{2} + b = c\sqrt{3}$$
.

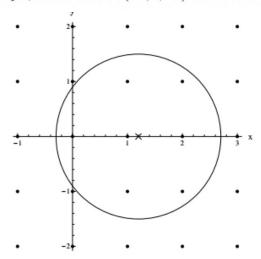
(i) By squaring both sides of the equation, show that a = b = c = 0.

[You may assume that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{2/3}$ are all irrational numbers. An irrational number is one which cannot be written in the form p/q where p and q are integers.]

(ii) Suppose now that m, n, M, N are integers such that the distance from the point (m, n) to $(\sqrt{2}, \sqrt{3})$ equals the distance from (M, N) to $(\sqrt{2}, \sqrt{3})$.

Show that m = M and n = N.

Given real numbers a, b and a positive number r, let N(a, b, r) be the number of integer pairs x, y such that the distance between the points (x, y) and (a, b) is less than or equal to r. For example, we see that N(1.2, 0, 1.5) = 7 in the diagram below.



- (iii) Explain why N(0.5, 0.5, r) is a multiple of 4 for any value of r.
- (iv) Let k be any positive integer. Explain why there is a positive number r such that

$$N\left(\sqrt{2}, \sqrt{3}, r\right) = k.$$

Solution:

2. (i) [4 marks] If $a\sqrt{2} + b = c\sqrt{3}$ then squaring both sides of the equation gives

$$2a^2 + b^2 + 2ab\sqrt{2} = 3c^2.$$

If $ab \neq 0$ then

$$\sqrt{2} = \frac{3c^2 - 2a^2 - b^2}{2ab}$$

is rational – a contradiction and so a=0 or b=0. If a=0 then we have $\sqrt{3}=b/c$ unless b=c=0; if b=0 then we have $\sqrt{2/3}=c/a$ unless c=a=0.

Year 12 Problem-Solving Course

(ii) [4 marks] We have that the square of the distance from (m, n) to $(\sqrt{2}, \sqrt{3})$ equals the square of the distance from (M, N) to $(\sqrt{2}, \sqrt{3})$, or put algebraically

$$(m - \sqrt{2})^2 + (n - \sqrt{3})^2 = (M - \sqrt{2})^2 + (N - \sqrt{3})^2.$$
 (1)

Rearranging this gives

$$2(M-m)\sqrt{2} + (m^2 + n^2 - M^2 - N^2) = 2(n-N)\sqrt{3}$$
.

By part (i) we have that 2(M-m)=0=2(n-N) and hence M=m and N=n.

(iii) [4 marks] If a particular point (x,y) is within distance r of $\left(\frac{1}{2},\frac{1}{2}\right)$ then so will its reflection in the $x=\frac{1}{2}$ line, the $y=\frac{1}{2}$ line and in both lines as these are diameters of the circle. The coordinates of the three points are integers also. Precisely these are the points

$$(1-x,y)$$
, $(x,1-y)$, $(1-x,1-y)$.

As the lattice points within the circle can be divided into sets of four like above then $N\left(\frac{1}{2}, \frac{1}{2}, r\right)$ is a multiple of 4.

(iv) [3 marks] As r increases then the circle (and its boundary) consumes lattice points. But because no two lattice points are equidistant from $(\sqrt{2}, \sqrt{3})$ – as shown in part (ii) – then the lattice points are consumed one at a time and all positive integers are achieved by $N(\sqrt{2}, \sqrt{3}, r)$.

3 of 3 28/10/13 © MEI