Year 10 Mock Practice Paper 1 - Mark Scheme

Q1.

Q	Working	Answer	Mark	S	Notes
	(-2,-4)(-1,-1)(0, 2)(1, 5)(2, 8) (3, 11)(4, 14)	Correct line between	4	B4	For a correct line between $x = -2$ and $x = 4$
	(3, 11)(1, 11)	x = -2 and $x = 4$		В3	For a correct line through at least 3 of (-2,-4)(-1,-1)(0, 2) (1, 5)(2, 8)(3, 11)(4, 14) OR for all of (-2,-4)(-1,-1)(0, 2) (1, 5)(2, 8)(3, 11)(4, 14) plotted but not joined
				B2	For at least 2 correct points plotted OR for a line drawn with a positive gradient through (0, 2) and a clear attempt to use a gradient of 3
				B1	For at least 2 correct points stated (may be in a table) OR For a line drawn with a positive gradient through (0, 2) OR for a line with the correct gradient. NB a line joining (0, 2) to (3, 0) scores B0
					Total 4 marks

Q2.

Question	Working	Working Answer 40, 60, 20	nswer Mark		Notes
(a)			2	B2	Award B1 for any one correct. Allow standard form, but not trailing zeros (40.0/40.00 etc)
(b)	$\frac{"40" + "60"}{"20"} = \frac{100}{20}$		2	M1	For adding their 40 and 60 correctly (not 42.37 and 58.92) or for correct working with rounded figures.
		5		A1cao	dep on M mark awarded above.
					Total 4 marks

Q3.

Radius
$$=\frac{16}{2} = 8$$
 M1

Area =
$$\frac{1}{4}\pi \times 8^2 = 16\pi$$
 A1

Q4.

Question	Working	Answer	Mark	Notes
	$a^{2} + a\sqrt{b} + a\sqrt{b} + b \text{ or}$ $a^{2} + a\sqrt{b} + a\sqrt{b} + \left(\sqrt{b}\right)^{2}$			M1 Correct expansion
1		6		A1 For a
0		13	3	A1 For b
· ·				Total 3 marks

Q5.

Q	Working	Answer	Mark		Notes
(a)	*	22 000 000	1	B1	
(b)		9.5 × 10 ⁵	1	B1	
					Total 2 marks

Q6.

Question	Working	Answer	Mark	Notes
(a)				M1 for $3n + k$ (k may be zero) oe
		3n + 1 oe	2	A1 need not be simplified eg. $4 + 3(n-1)$
				NB: $n = 3n + 1$ gains M1 A0
(b)	$3n+1=88$ or $(88-1) \div 3$			M1 ft " $3n + 1$ " = 88 NB. Only ft if their expression is of the form $an + b$ where $a > 1$ and $b \ne 0$
		29	2	A1 ft NB. unrounded answer must be an integer
		3		Total 4 marks

Q7.

Question	Working	Answer	Mark	Notes			
(a)	3330 330 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10	1	B1	Accept $\frac{1}{6}$ hour if units stated.		
(b)	1 ÷ 0.25 oe			M1	Accept 1 ÷ 15		
		4	2	A1			
(c)	Line at 1.5 km from	correct		B1			
	0930 to 0940 Line from 1.5 km at 0940 to 0 km at 1010	line correct line	2	B1	Accept line from 1.5 km at 09 30 to 0 km at 10 00		
					Total 5 marks		

Q8.

Question	Working	Answer	Mark	Notes
(a)	Correct factor tree or repeated division to find factors 2, 2, 2, 3, 5, 5 (condone inclusion of 1's)	$2^3 \times 3 \times 5^2$	3	M2 for finding correct factors (condone the inclusion of 1) M1 for finding a set of factors (with a product of 600) which includes at least 3 of the six prime factors. This may be a factor tree that is incomplete or only correct to this stage, for instance. A1 dep on M2
(b)	Eg $\frac{5^{12}}{5^3}$ or $\frac{5^{10}}{5}$ or $\frac{5^{11}}{5^2}$	59	2	M1 For a correct application of an index law.
-		-		Total 5 marks

Q9.

Question Number		Working Answer Mark				Notes	
			3	В1	May be implied by second B1	May be stated	
				B1		or marked on diagram	
		122		B1	Award full ma		
				Tot	al 3 marks		

Q10.

Ques		Working	Answer	Mark		Notes
a	8000:50 or 50:8000 or $\frac{8000}{50}$ oe			2	M1	
		V0	160		A1	
b	$\frac{72}{80} \times 50 \text{ oe}$	72 × 100 ÷ '160'		2	M1	A correct method to find the length of the model, ft their answer to (a)
			45		A1	cao (If ans 1.6 in (a) then do not award marks for 72 ÷ 1.6 = 45)
			3		3	Total 4 marks

Q11.

Question	Working	Answer	Mark	Notes					
	64 x 4 (=256) 70 x 5 (=350) "350" - "256"	DOCUMENTS DOCUMENT	M1 0.64 × 400 (= 256) 0.64 × 4 (= 2.56) 0.7 × 500 (= 350) 0.7 × 5 (= 3.5) (3.5 - 2.56) × 100 M2 A1						
	Alternative (i): List of 4 numbers adding to 256 List of 5 numbers adding to 350 list of 5 is identical to list of 4 but also contains 94 eg 94,50,50,56,100 and 50,50,56,100	94 or 94% etc (as above)		M1 M1 M1 dep on M2 A1 permitted answers as listed for A1 above					
	Alternative (ii): 70 - 64 (=6) (70 - 64) X 4 (=24) 70 + 24	94 or 94% etc (as above)		M1 M1 M1 dep on M2 A1 permitted answers as listed for A1 above					

Q12.

Question	Working	Answer	Mark		Notes
	160 - 3x + 7x - 20 = 180 or $2(160 - 3x) + 2(7x - 20) = 360$ oe		3	M1	For a correct equation
	e.g. $4x = 180 - 140$ or $-3x + 7x = 180 + 20 - 160$ or $4x = 40$ or $14x - 6x = 360 - 320 + 40$ oe			M1	For isolating the terms in x in a correct equation
(6 8)		10	64	A1	Dep on at least M1
					Total 3 marks

Question Number	Working	Answer	Mark	Notes		
(a)		x = 3, y = 2	1	В1	cao	
(b)	Use of gradient and y = mx + c or clear attempt to use vertical difference eq		4	M1	Throughout question accept $\frac{2}{3}$ written as a decimal rounded or	
100	horizontal difference $\frac{2}{3}$ oe (ignore omission of – sign)				truncated to 2 or more decimal places	
	or for $3y = 12 - 2x$ or $3y = -2x + 12$					
d r	or for $y = \frac{12 - 2x}{3}$ oe or gradient $= \frac{2}{3}$ stated					
	or used					
	(grad =) $-\frac{2}{3}$ oe or $y = 4 - \frac{2}{3}x$ oe			A1		
	$y = -\frac{2}{3}x + c \text{ or for}$ $y = -\frac{2}{3}x + c \text{ where}$			M1	ft from " $-\frac{2}{3}$ "	
	$c \neq 10$ or $-\frac{2}{3}x+10$, " $-\frac{2}{3}$ " $x+10$, $L=-\frac{2}{3}x+10$ etc					

	2:	$\frac{2}{3}x + 10$ oe or $x + 3y = 30$ oe $-\frac{2}{3}$ " $x + 10$ oe		A1	ft from " $-\frac{2}{3}$ "
(b)	Alternative scheme: Use of $2x+3y=k$ 2x+3y=k		4	M1	
	2× 0 + 3×10 (=k)			M1	Substitution of (0, 10) into $2x+3y=k$
	k = 30			A1	
		2x + 3y = 30 oe		A1	
(c)	(1,1) (1,2) (1,3) (2,2) marked			B2	B1 for 3 correct points marked and none wrong or for all correct points and either one or more of points on y axis ie. $(0,-1)$ $(0,0)$ $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$ points on $y=x-1$ ie $(0,-1)$ $(1,0)$ $(2,1)$ $(3,2)$
					Total 7 marks

Q	Working	Answer	Mark		Notes
i	e.g. $\frac{1}{2} \times (x+6+3x-4) \times (x-1)$ or $(x+6)(x-1)$ or $(x-1)(3x-4)$ or $\frac{1}{2} \times (x-1)(3x-4-(x+6))$ eg. $\frac{1}{2} \times (4x^2-2x-2) = 119$		6	M1	correct algebraic expression for any relevant area
	eg. $\frac{1}{2} \times (4x^2 - 2x - 2) = 119$			M1	for correct equation with at least one pair of brackets expanded correctly
		shown		A1	for completion to given equation
ii	$\frac{(2x\pm15)(x\pm8) (=0) \text{ or}}{2-1\pm\sqrt{(-1)^2-4\times2\times-120}} \text{ or}$ $\left(x-\frac{1}{4}\right)^2 - \left(\frac{1}{4}\right)^2 - 60 = 0$			M1	Start to solve quadratic condone one sign error in substitution if quadratic formula used; allow -1 ² or 1 ² or 1 in place of (-1) ² ft from an incorrect 3 term quadratic equation
	$(2x+15)(x-8)$ (=0) or $\frac{1\pm\sqrt{1+960}}{4}$ or $x = \frac{1}{4} \pm \sqrt{\left(\frac{1}{4}\right)^2 + 60}$ or -7.5 and 8 given as solutions			M1	dep ft method from an incorrect 3 term quadratic equation
		8		A1	Award all 3 marks if first M1 awarded and 8 alone given as final answer
					Total 6 marks

Q15.

Question	Working	Answer	Mark	Notes		
	x = 0.1777 and $10x = 1.7779x = 1.6$	16/90 oe		See at least 3 sevens or recurring symbol. Condone omission of x. M1 Accept 10x = 1,777 and 100x=17.77 A1 Must be integers in numerator and denominator but not 8 & 45 N.B for 0.1777 = 1/10 + 0.0777 (0.777 needs to be shown to be 7/90 to gain first M1)		
				Total 2 marks		

Q16.

The correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
(a)		(a-b) (a+b)	1	B1 oe
(b)	$(2^{11}-1)(2^{11}+1)$ or $(2048-1)(2048+1)$ or $\sqrt{4194304} = 2048$ or $\sqrt{2^{22}} = 2048$ or $\sqrt{2^{22}} = 2^{11}$ or $\sqrt{4194304} = 2^{11}$ or $\sqrt{3}$, 23 , 89 , 683 (may be seen in a factor tree)		2	M1
		2047, 2049		A1 cao
				Total 3 marks

Q17.

Question	Working	Answer	Mark	Notes		
	$y^2 = ay^2 + n$		5	M1		
	$y^{2} - ay^{2} = n$ or $1 = a + \frac{n}{v^{2}}$ or $1 - a = \frac{n}{v^{2}}$			M1 isolate terms in y^2 or divide through by y^2		
	$y^2(1-a)=n$			$M1$ take out y^2 as a common factor		
	$y^2 = \frac{n}{1 - a}$			M1 y^2 as subject		
		$\sqrt{\frac{n}{1-a}}$		A1 accept $\sqrt{\frac{-n}{a-1}}$		
				Total 5 marks		

Q18.

Question	Working	Answer	Mark	Notes
(a)		x/60 oe	1	B1 Must be a fraction or 0.016 rec x
(b) (i)	$2(^{6}x/60^{3}) = (x+20)/80$ 16(0) x = 6(0)(x + 20) or $80 x = 30(x + 20)$ or $2x/3 = (x + 20)/4$		3	M2 (must be an equation) M1 for either 2("x/60") or (x+20)/80 A1 dep Correct removal of denominators. Correct removal of denominators. Simplifying denominators.
(ii)	$8x = 3x + 60$ or $5x = 60$ or $60 \div 5$	12	2	M1 A1 Dependent on M1. Can be marked if seen in b(i)
8				Total 6 marks

Q19.

Q	Working	Answer	Mark	Notes
(a)	$2 \times 3 \times x = (x + 10)(3x + 20)$ or $6x^2 = (x + 10)(3x + 20)$ $6x^2 = 3x^2 + 50x + 200$		3	M2 If not M2 then M1 for 2 x $3x$ x x or 2 x $3x^2$ or $6x^2$ or (x + 10)(3x + 20) A1 Dependent on at least M1
(b)	(3x+10)(x-20) (=0) Marks can be awarded in b) if seen in a) 20 x 3 x 20	x=20 1200	5	M2 or $x = \frac{50 \pm \sqrt{2500 + 2400}}{6}$ If not M2 then M1 for (3x ± 10)(x ± 20) or $x = \frac{50 \pm \sqrt{-50^2 - 4 \times 3 \times -200}}{2 \times 3}$ condone 1 sign error A1 dep on M1 in b). Ignore negative root (-3.3 rec) M1 A1 dep on 1st M1 in b)
		(C		Total 8 marks