

## A-level FURTHER MATHS

Centre of Mass 1 Mark scheme v1.0

Specification content coverage: ME1, ME2, ME3, ME4

| Question | Solutions                                                                                                                   | Mark                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1        | Uniform means that the mass acts at the centre of the rod, 1 metre from A                                                   | 1                                       |
|          | Total                                                                                                                       | 1                                       |
| 2        | 3(1.5) = 5x                                                                                                                 | 1                                       |
|          | x = 0.9 metres                                                                                                              | 1                                       |
|          | Total                                                                                                                       | 2                                       |
| 3        | $m\begin{bmatrix} 1\\0 \end{bmatrix} + 2m\begin{bmatrix} 2\\-1 \end{bmatrix} + 5m\begin{bmatrix} -5\\6 \end{bmatrix} = 8mv$ | 1 Forming equation                      |
|          | $\begin{bmatrix} -20 \\ 28 \end{bmatrix} = 8v$ $\begin{bmatrix} -2.5 \\ 3.5 \end{bmatrix} = v$ Coords = (-2.5, 3.5)         | 1 Totalling LHS 1                       |
|          | Total                                                                                                                       | 3                                       |
| 4        | $\tan 63.4^{\circ} = \frac{0.5L}{0.2}$                                                                                      | 1 for use of tan 1 for correct fraction |
|          | L = 0.80  m                                                                                                                 | 1                                       |
|          | Total                                                                                                                       | 3                                       |
| 5 (a)    | The <i>y</i> -axis is a line of symmetry                                                                                    | 1 Must use 'symmetry'                   |
|          | Total                                                                                                                       | 1                                       |
| 5 (b)    | $\int_{-3}^{3} \left(9 - x^2\right) \mathrm{d}x = 36$                                                                       | 1                                       |
|          | $\frac{1}{2} \int_{-3}^{3} \left(9 - x^2\right)^2 dx = 129.6$                                                               | 1                                       |
|          | $129.6 \div 36 = 3.6$                                                                                                       | 1                                       |
|          | Total                                                                                                                       | 3                                       |

| 6     | $1\begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2\begin{bmatrix} 3 \\ -2 \end{bmatrix} + p\begin{bmatrix} a \\ 0 \end{bmatrix} = \left(1 + 2 + p\begin{bmatrix} 4 \\ -0.5 \end{bmatrix}\right)$ |                                                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|       | Using $y$ component $-3 = -0.5 (3 + p)$                                                                                                                                                  | 1 using $x$ component 1 finding $p$                             |
|       | p = 3 Using x component $8 + pa = 4 (3 + p)$                                                                                                                                             | 1 Using <i>y</i> component and substituting their <i>p</i>      |
|       | $8 + 3a = 24$ $a = \frac{16}{3}$                                                                                                                                                         | 1 finding a                                                     |
|       | Total                                                                                                                                                                                    | 4                                                               |
| 7(a)  | $60(2.5) + 48(5 + \frac{8}{3}) = 108\overline{x}$                                                                                                                                        | 1 Use of $\frac{8}{3}$ 1 Forming equation 1 Any correct pairing |
|       | $\frac{-}{x} = \frac{518}{108} = \frac{259}{54}$                                                                                                                                         | 1                                                               |
|       | Total                                                                                                                                                                                    | 4                                                               |
| 7(b)  | $8(20)g = 518 \rho g$<br>$\rho = 0.31 \text{ kg ml}^{-2}$                                                                                                                                | 1 where $\rho$ = density 1                                      |
|       | Total                                                                                                                                                                                    | 2                                                               |
| 8 (a) | Volume of hemisphere = $\frac{2\pi r^3}{3}$                                                                                                                                              | 1 stated or implied by use                                      |
|       | $\pi \int_0^r xy^2 dx = \pi \int_0^r x \left(r^2 - x^2\right) dx$                                                                                                                        | 1 Use of formula                                                |
|       | $=\pi \left[\frac{r^2x^2}{2} - \frac{x^4}{4}\right]$                                                                                                                                     | 1 Integrating                                                   |
|       | $=\frac{nr^4}{4}$                                                                                                                                                                        | 1 Substituting correct limits                                   |
| İ     | $\pi \nu \Lambda$                                                                                                                                                                        | 1                                                               |
|       | $\frac{1}{x} = \frac{\frac{nr}{4}}{\frac{3}{2}} = \frac{3r}{2}$                                                                                                                          |                                                                 |
|       | $\frac{1}{x} = \frac{\frac{\pi r^4}{4}}{\frac{2\pi r^3}{3}} = \frac{3r}{8}$                                                                                                              |                                                                 |

| 8 (b) | Using distances from top of hemisphere $ \left(\frac{2}{3}\pi r^3\right) \left(\frac{5r}{8}\right) + \left(\frac{1}{3}\pi r^2\right) (2r) \left(\frac{3r}{2}\right) = \frac{1}{x} \left(\frac{2}{3}\pi r^3\right) $ $ \frac{1}{x} = \frac{17r}{16} $ Distance = $\frac{r}{16}$ from plane face | 1 Forming equation 1 Volumes correct 1 Distances correct |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|       | Total                                                                                                                                                                                                                                                                                          | 4                                                        |
|       | TOTAL                                                                                                                                                                                                                                                                                          | 32                                                       |