

AS and A-level FURTHER MATHS

Circular motion Mark scheme

Specification content coverage: MD1, MD2, MD3

Question	Solutions	Mark
1 (a)	Use $\omega = v/r$	
	$\omega = \frac{4}{0.5} = 8 \text{ rad s}^{-1}$	1
	Total	1
1 (b)	Use $a = \frac{v^2}{r} or a = r\omega^2$	
	$a = \frac{4^2}{0.5} = 32 \text{ m s}^{-2} \text{ or } 4(8^2) = 32 \text{ m s}^{-2}$	1
	Total	1
2 (a)	Use $\omega = \frac{2\pi}{s}$	
	$\omega = \frac{2\pi}{5} \operatorname{rad} s^{-1} \operatorname{or} 0.4\pi \operatorname{rad} s^{-1}$	1
	Total	1
2 (b)	Use $v = r\omega$	
	$v = \frac{6\pi}{5} \text{ m s}^{-1} \text{ or } 1.2\pi \text{ m s}^{-1}$	1
	Total	1
3 (a)	Use $\omega = \frac{\theta}{t}$ eg $\frac{\pi/2}{12}$ or $P = 24$	1
	$\omega = \frac{\pi}{12} \operatorname{rad} s^{-1}$	1
	Total	2
3 (b)	Use $a = r\omega^2$	1
	$a = \frac{\pi^2}{24} \text{ m s}^{-2}$	1
	Total	2

4	Use $T = \frac{mv^2}{r}$ $80 = 2 \times \frac{5^2}{r}$	1
	, 5 ²	
	$80 = 2 \times \frac{5}{3}$	1
	1	•
	$r = \frac{5}{8}$ m or 0.625 m	1
	Total	3
5	R = 2mg	1
	$F=2m(3a)\left(\sqrt{\frac{g}{6a}}\right)^2$	1
	$2\mu mg \ge 2m(3a) \left(\sqrt{\frac{g}{6a}}\right)^2$	1
	$2\mu mg \ge 2m(3a) \left(\sqrt{\frac{a}{6a}}\right)$	
	$\mu \ge \frac{1}{2}$	1
	Total	4
6	R = mg	1
	$F = m \times \frac{12^2}{35} = \frac{144m}{35}$	1
	$\frac{144m}{35} = \mu mg$	
	$\frac{-\mu m_g}{35}$	1
	$u = \frac{144}{1}$	
	$\mu = \frac{144}{35g}$	1
	$\mu=0.42$ (correct rounding to 2 significant figures)	1
	Total	5
7	R = 4mg	1
	$F = 4mr \left(2\sqrt{\frac{g}{5a}}\right)^2$	1
	$=\frac{16mrg}{}$	
	$=\frac{3}{5a}$	1
	$\frac{16mrg}{5a} = 0.6 \times 4mg$	
	3 a	1
	$r = \frac{3a}{4} \text{ or } 0.75a$	1
	4	
	Total	5

8	Resolving vertically on Q $T = 3g$ (= 29.4)	1
	Resolving vertically on P $R = 2g$ (= 19.6)	1
	(For min speed) $29.4 - 5.88 = \frac{2v^2}{0.8}$ $v = 3.1 \text{ m s}^{-1}$ (correct rounding to 2 significant figures)	1
		1
	(For max speed) $29.4 + 5.88 = \frac{2v^2}{0.8}$	1
	$v = 3.8 \mathrm{m \ s^{-1}}$ (correct rounding to 2 significant figures)	1
	$3.1 \le v \le 3.8$	1
	Total	7