

AS and A-level FURTHER MATHS

Momentum and collisions
Mark scheme

Specification content coverage: MB1, MB2, MB3

Question	Solutions	Mark
		1
1	$1.0 \mathrm{m s^{-1}}$	
	Total	1
2	I = 0.2(-3i + 7j) - 0.2(2i + 5j)	1
	I = -i + 0.4j Ns	1
	Total	2
3	CoM: $6 \text{ m} - 3 \text{ m} = 1 \text{ m} + v_B \text{m}$	1 (must have 'm')
	$v_{\rm B} = 2 \; {\rm m \; s^{-1}}$	1
	2 1	
	NEL: $e = \frac{2-1}{6+3}$	1
		1
	$e=rac{1}{9}$	
	Total	4
4	$\frac{1}{2}mv^2 = \frac{1}{3} \times \frac{1}{2}mu^2$	
	$\frac{v^2}{u^2} = \frac{1}{3}$	1
	$e = \frac{v}{u}$ used	
	$e = \frac{1}{\sqrt{3}}$	1
	Total	2

E (a)	Callisian hatusan A and D	
5 (a)	Collision between A and B:	1
	CoM: $15 + 0 = 3v_A + 2v_B$	
	NEL: $\frac{V_B - V_A}{5} = 1$	
		1
	$v_A = 1, v_B = 6$	1
	Collision between B and C:	
	CoM: $12 + 0 = 2v_{B'} + v_C$	1
	NEL: $\frac{v_C - v_{B'}}{6} = 1$	
	$v_{B'} = 2, v_C = 8$	1
	Speed of A, B and Cafter collision with B and Care 1 m s ⁻¹ ,	
	2 m s ⁻¹ and 8 m s ⁻¹	1
	Total	6
5 (b)	No, because C is moving faster than B which is moving	1
	faster than A, all in the same direction.	
	Total	1
6	$F \times 4 = 5(5i - 3j) - 5(2i - j)$ $(= 15i - 10j)$	1
	F = 3.75i - 2.5j	1
	Magnitude of force = 4.51 N (3sf)	1
	Direction of force = 33.7° below i	1 (-33.7° or equivalent)
	Total	4
7	$\downarrow v^2 = 0^2 + 2 \times 10 \times 2.5$,
	$v = \sqrt{50} \text{ m s}^{-1}$ (or equivalent)	1
	$1500\sqrt{50} = 2000v'$	1
	$v' = \frac{3}{4}\sqrt{50}$	
	$20\ 000 - 50\ 000 = 2000a$	1
	$(a = -15 \text{ m s}^{-2})$	
	$0^2 = \frac{9}{16} \times 50 + 2 \times (-15) \times s$	1
	Distance into the ground = 0.9 m (1sf)	1
	Total	5

8 (a)	$v^2 = 2g \times 1$	
	Speed when first hits ground = $\sqrt{2g}$	1
	Speed after first hits ground = $e\sqrt{2g}$	1
	Speed when hits ground second time = $e^{\sqrt{2g}}$	
	Speed after hits ground second time = $e^2 \sqrt{2g}$	1
	$0^2 = e^4 \times 2g - 2gh_2$ Height reached after second impact = e^4 m	
	Total	4
8 (b)	Total distance travelled = $1+2e^2+2e^4+$	1
	$= 1 + 2e^{2} (1 + e^{2} + e^{4} +)$	
	$= 1 + 2e^2 \left(\frac{1}{1 - e^2}\right) \text{ using geometric series}$	1
	$= \frac{1 + e^2}{1 - e^2}$ and justifying geometric series as $e^2 < 1$	1
	1-e	