

A-level FURTHER MATHS

Circular Motion

Mark scheme v1.0

Specification content coverage: MD4 MD5 MD6

Question	Solutions	Mark
1	$a = \frac{v^2}{}$	
	$a = \frac{1}{r}$	
	10 ² 2	1
	$a = \frac{10^2}{5} = 20 \text{ m s}^{-2}$	
	Total	1
2	$a = r\omega^2$	
	$a = 6400000 \times (7.3 \times 10^{-5})^2$	
	$a = 3.41 \times 10^{-2} \text{ m s}^{-2}$	1
	Total	1
3	$\mathbf{r} = 12\cos\frac{\pi}{6}t\mathbf{i} + 12\sin\frac{\pi}{6}t\mathbf{j}$	1 Differentiating twice
	6 6 6	T Differentiating twice
	$\mathbf{v} = -2\pi \sin\frac{\pi}{6}t\mathbf{i} + 2\pi \cos\frac{\pi}{6}t\mathbf{j}$	1 Obtaining v
	$\mathbf{a} = -\frac{2\pi^2}{3}\cos\frac{\pi}{6}t\mathbf{i} - \frac{2\pi^2}{3}\sin\frac{\pi}{6}t\mathbf{j}$	1 Obtaining a
	$\mathbf{a} = -\frac{\cos 6\pi - 3\sin 6\pi}{3}$	
	Magnitude of acceleration = $\frac{2\pi^2}{3}$ m s ⁻¹	1
	3	
	Total	4
4	$F = mr\omega^2 = 0.4m\omega^2$	1 Force towards centre
	$F \le \mu R$ gives $F \le 0.2mg$	1 Law of friction
	$I \supseteq \mu I $ gives $I \supseteq 0.2mg$	
	$0.4m\omega^2 \leq 0.2mg$	1 Forming inequality
	$\omega \le 2.2 \text{ rads}^{-1}$	1 Maximum obtained
	Maximum = 2.2 rads ⁻¹	
	Total	4

5	VE at bottom of sirals $=\frac{1}{mv^2} = \frac{1}{10000000000000000000000000000000000$	1 KE
	KE at bottom of circle = $\frac{1}{2}mv^2 = \frac{1}{2}(0.3)v^2$	1 PE
	PE at top of circle = $mgh = (0.3)g(2r)$	1112
	For complete circles KE at bottom must exceed PE at top $1_{(0,3)v^2 > (0,3)g(2v)}$	1 Forming inequality
	$\frac{1}{2}(0.3)v^{2} > (0.3)g(2r)$ $v^{2} > 4gr$	
	$v > 2\sqrt{rg}$	1 Obtains result – must see previous line
	Total	1 Use of force towards
6	Force towards centre = $\frac{mv^2}{r}$	centre
	Force towards centre = $\frac{r}{70(35)^2} = 245 \text{ N}$	1 value seen or implied
	Newton's Second Law	1 Forming equation 1 Correct positive <i>R</i>
	70g - R = 245 R = 442 N to 3sf	
	Total	4
7 (a)	For particle Q, resolve vertically $T = 6g = 58.8 \text{ N}$	1
	For particle P , resolve vertically $T\cos\theta = 4g$	1
	Hence $6g\cos\theta = 4g$	1
	$\theta = \cos^{-1}\left(\frac{2}{3}\right) = 48^{\circ}$	1
	Total	4
7(b)	Force towards centre = $\frac{4(5)^2}{r} = \frac{100}{r}$	1 Seen or implied
	Newton's second law horizontally $T\sin\theta = \frac{100}{100}$	1 Forming equation
	$r = \frac{100}{58.8 \sin 48} = 2.3 \text{ m}$	1 Correct r
	Total	3

8 (a)	Maximum speed occurs at lowest point of motion	1 Clearly stated
	KE at lowest point $=\frac{1}{2}mv^2 = 35mv^2$	1 KE
	PE at start when being held = $mgh = 70g(2 - 2\cos 30^{\circ})$	1 PE
	Conservation of energy $35v^2 = 70g(2 - 2\cos 30^\circ)$	Forming equation
	$v = 2.3 \text{ m s}^{-1}$	1
	Total	5
8 (b)	Speed will be less so it is an over estimate	1
	As Martin has size his centre of mass will make the radius of the circle less, hence the potential energy will be lower and subsequently speed will be as well.	1
	Total	2
	TOTAL	32