

A-level FURTHER MATHS

Centres of Mass 2 Mark scheme v1.0

Specification content coverage: ME5, ME6

Question	Solutions	Mark
1	Resolver vertically $R = W$	
	Law of friction $F = \mu R = \mu W$	1
	Slides first so $P > F$ hence $P > \mu W$	1
	Total	2
2	Position of centre of mass from base of cone	1
	$=\frac{h}{4}=\frac{8a}{4}=2a$	
	1 a 1	1 Use of tan to form ratio
	$\tan\theta = \frac{a}{2a} = \frac{1}{2}$	1
	$\theta = 26.6^{\circ}$	
	Total	3
3	Moments about O where anticlockwise is positive	1 any three pairs correct
	=4(2) - 5(1) + 2(2) - 1(3) + 3(1) - 2(1)	1 all six pairings correct
	= 5 Nm As this is positive sense is anticlockwise	magnitude correct signs consistent to deduce anticlockwise
	Total	4
4(a)	4i + j + -i - 2k + F = 0 F = $-3i - j + 2k$	1
	Total	1
4 (b)	$\begin{vmatrix} \mathbf{i} & 1 & 4 \\ \mathbf{j} & 5 & 1 \\ \mathbf{k} & 0 & 0 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & 3 & -1 \\ \mathbf{j} & 0 & 0 \\ \mathbf{k} & -1 & -2 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & 0 & -3 \\ \mathbf{j} & -4 & -1 \\ \mathbf{k} & 2 & 2 \end{vmatrix} = \begin{bmatrix} -6 \\ 1 \\ -31 \end{bmatrix}$ $\text{Magnitude} = \sqrt{998}$	1 use of r x F 1 any 1 component correct 1 all components correct 1 use of Pythagoras to find magnitude
	Total	4

5 (2)	Use areas of rectangles as proportional to mass	
5 (a)	Let \overline{x} be distance of centre of mass from AB	
	$0.6(0.75) + 0.3(3) = 0.9\overline{x}$	1 any area/distance pairing 1 Fully correct equation
	$\overline{x} = 1.5 \text{ m}$	1 obtains 1.5 m
	$\overline{x} = BC$ as required	1 compares to BC or AD
	Total	4
5(b)	Normal reaction at wall = R	
	Moments about point of contact with floor	
	$R(4.5) = 120(3\cos 60^{\circ})$	1 LHS
		1 RHS
	$R = 40\sqrt{3}$	1
	Total	3
5(c)	Normal reaction at floor = N	
	Resolve vertically $N = 120$	1
	Resolve horizontally $F = R = 40\sqrt{3}$	1
	Law of friction $F \le \mu R$ gives $F\mu \ge \frac{F}{R} = \frac{40\sqrt{3}}{120} = \frac{\sqrt{3}}{3}$	1
	Total	3
6(a)	Use volumes as proportional top masses	
	$\pi r^{2}(4r)(2r) + \frac{1}{3}\pi r^{2}\left(4r + \frac{kr}{4}\right) = \left(\pi r^{2}(4r) + \frac{1}{3}\pi r^{2}(kr)\right)\overline{x}$	1 for cylinder term on LHS 1 for cone term on LHS 1 for RHS
	$06x + x(16 + l_2)$	1 equation formed and
	$\overline{x} = \frac{96r + r(16+k)}{48+4k}$	rearranged
	$\overline{x} = \frac{112 + k}{48 + 4k} r$	
	$x = \frac{1}{48 + 4k}r$	1
	Total	5
6(b)	$\tan \theta = \frac{\text{radius}}{\overline{x}} = \frac{48 + 4k}{112 + k}$	1 Use of ratio
	\overline{x} 112+ k	
	48+4k 2	1 forming equation
	$\frac{48+4k}{112+k} = \frac{2}{3}$	
	k = 8	1
	κ – o	
	Total	3
	TOTAL	32
	1	