

AS and A-level FURTHER MATHS

Work done by variable force, EPE and power Mark scheme

Specification content coverage: MC5, MC6, MC7

Question	Solutions	Mark
1	4.5 J	1
	Total	1
2	Work done = $\int_{1}^{3} 3x (5-x) dx$	
	$=\int_{1}^{3}15x-3x^{2}\mathrm{d}x$	1
	$= \left[\frac{15x^2}{2} - x^3\right]_1^3$	1
	$\left(= \frac{81}{2} - \frac{13}{2} \right) = 34 \text{ J}$	1
	Total	3
3	Max speed ⇒ resultant forœ = 0	
	$D = 35v$ \Rightarrow $D = 35 \times 58 = 2030 \text{ N}$	1
	$(P = Dv \implies P_{\text{max}} = 2030 \times 58 = 117740 \text{ W})$	
	$P_{\text{max}} = 120000\text{W} (2\text{sf})$	1
	Total	2
4 a	$D = \frac{8400}{12} = 700 \text{ N}$	1
	Total	1
4 b	Resultant force = ma	
	"700" $-480 = 1350a$	1
	$a = 0.163 \mathrm{m s^{-2}}$	1
	Total	2

5 a	$T = kx \implies 21 = 0.35k \implies k = 60(N m^{-1})$	1
	$1 = kx \implies 21 = 0.55k \implies k = 60(N III)$	
	Total	1
5 b	$ kx^2$ "60" $(0.43)^2$	
	$EPE = \frac{kx^2}{2} = \frac{"60"(0.43)^2}{2}$	1
	EPE = 5.5 J (2 sf)	1
	Total	2
6	Extension = 0.6 metres	1
	$\left(EPE = \frac{\lambda x^2}{2} \implies \right) 27 = \frac{\lambda \left("0.6"\right)^2}{2(1.4)}$	1
	$\lambda = 210 \mathrm{N}$	1
	Total	3
7	Assume car can be modelled as a particle to allow us to assume all forces act at the same point.	
	$D - 22v = 1300 \times 0.466$ $D = 22v + 605.8$	1
	32400 = Dv	1
	$32400 = (22v + 605.8)v = 22v^2 + 605.8v$	1
	$0 = 22v^2 + 605.8v - 32400$	1
	v = 27.0 or $v = -54.5$	1
	$v > 0$ so $v = 27.0 \mathrm{ms^{-1}}$	1
	Total	6

8 (a)	At start, EPE $\left(= \frac{\lambda x^2}{2l} = \frac{2400(0.8)^2}{2(1.2)} \right) = 640 \text{ J}$	1
	At height h, KE = $\frac{1}{2}(18)v^2 = 9v^2$	
	GPE = $mgh = 18(9.8)h = 176.4h$	1 (KE and GPE)
	At this height, the extension of the string will be $h-3.2$	
	$EPE = \frac{2400(h-3.2)^2}{2(1.2)}$	1 (EPE in terms of $h - 3.2$)
	$=1000h^2-6400h+10240$	1 Correct expansion
	$640 = 9v^2 + 176.4h + 1000h^2 - 6400h + 10240$	1 Forming eq (using four energy terms)
	$9v^2 = -9600 + 6223.6h - 1000h^2$	1 No errors
	Total	6
8 (b)	v = 0 at maximum height	
	$0 = -9600 + 6223.6h - 1000h^2$	1
	h = 3.40 or h = 2.82 but h > 3.2 so h = 3.4 m (2sf)	1
	Total	2
8 (c) (i)	If air resistance were considered, work would need to be done to overcome this resistive force. Therefore maximum height would decrease.	1
	Total	1
8 (c) (ii)	If string was not light, we would need to consider its potential energy. This would require some of the energy in the system, so maximum height would decrease.	1
	Total	1
8 (c) (iii)	If the string is held at the point O, then the motion cannot be truly vertical. If it were, it would hit what is holding it.	1
	Total	1