

AS-level FURTHER MATHS

Impulse and Dimensional Analysis Version 1.0

Specification content coverage: MA1 MA2 MB3 MB4

In this test you will be assessed on:

- finding the dimensions of familiar quantities with compound units.
- understanding the concept of a dimensionless constant.
- determining the power of each variable in a partially completed formula.
- predicting a formula, in simple situations.
- knowing and using a variety of formulas for impulse in one and two dimensions
- understanding that when two bodies collide, the impulse acting on each is equal and opposite.
 - using $I = \int F dt$ for a variable force.

Section A: The basics

1 State the dimensions of force.

[1 mark]

A ball is released from rest and falls a distance of h metres before reaching the Earth's surface.

The ball's velocity, in m s⁻¹, when it reaches the surface is given by the formula

$$v = \sqrt{2gh}$$

Identify any dimensionless constants in this formula.

[1 mark]

3 Show that the formula

$$Ft = mv - mu$$

Is dimensionally consistent

[3 marks]

4 (a) A particle of mass 3 kg is moving at a speed of 4 m s⁻¹ along smooth horizontal ground.

The particle collides directly with a smooth vertical wall.

After the collision it moves directly away from the wall with speed 2.5 m s⁻¹

Find the magnitude of the impulse of the wall on the particle.

[3 marks]

4 (b) State the magnitude of the impulse of the particle on the wall.

[1 mark]

A particle of mass 0.5 kg is moving with velocity $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$ m s⁻¹

An impulse is applied to the particle and it then moves with velocity $\begin{bmatrix} 12 \\ -4 \end{bmatrix}$ m s⁻¹

Find the magnitude of the impulse.

[4 marks]

Section B: A bit more thinking

A particle of mass 2 kg is initially at rest. The particle then moves in a straight line under the action of a single force, *F* newtons.

It is given that

$$F = kt^2 + 4$$

where t is the time, in seconds, for which the force has been acting and k is a constant.

Given that the magnitude of the impulse exerted by the force on the particle from times t = 0 to t = 4 is 144 Ns, find the value of k.

[4 marks]

7 Harry thinks that the period, *t* seconds, of a simple pendulum is given by the formula

$$t = 2\pi \sqrt{\frac{g}{l}}$$

where l is the length of the string in metres and g is the acceleration due to gravity. Use dimensional analysis to show that Harry is incorrect.

[4 marks]

A particle of mass 1.5 kg is moving in a straight line along a smooth horizontal surface, under the action of a horizontal force *F* newtons.

Initially the particle was at rest.

It is given that

$$F = 4t + 7$$

where *t* is the number of seconds for which the force has been acting.

Find the impulse of the force on the particle in its first 3 seconds.

Hence find the speed of the particle when t = 3.

[4 marks]

9 (a) The time, *t*, for a single vibration of a piece of taut string is believed to depend on the length of the taut string, *l*,

the tension in the string, F,

the mass per unit length of the string, p,

and a dimensionless constant, k,

such that

$$t = kl^a F^b p^c$$

where a, b and c are constants.

By using dimensional analysis, find the values of $a,\,b$ and c

[5 marks]

9 (b) Use your formula from part 7(a) to explain what happens to the time taken for a single vibration of the string when the tension in the string is doubled.

[2 marks]