

A-level FURTHER MATHS

Momentum and Collisons Mark scheme v1.0

Specification content coverage: MB1, MB2, MB3

	Solutions	Mark
1	750 x 1.5 = 11250 Ns	1
	Total	1
2	$I = m\mathbf{v} - m\mathbf{u}$	
	$I = 2 \begin{bmatrix} 5 \\ -2 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	1 use of formula in 2D
	$I = \begin{bmatrix} 6 \\ -10 \end{bmatrix} \text{ Ns}$	1
	Total	2
3	0.4(3) + 0.1(0) = 0.5v	1 use of conservation of momentum
	$v = 2.4 \text{ m s}^{-1}$	1 2
_		
4	Momentum before $=4\begin{bmatrix}1.5\\2\end{bmatrix}+6\begin{bmatrix}-1\\-4\end{bmatrix}=\begin{bmatrix}0\\16\end{bmatrix}$	1 for either momentum before or after
	Momentum after $=4\begin{bmatrix} -3\\ -1 \end{bmatrix} + 6\mathbf{v} =$	1 forming equation
	$=4\begin{bmatrix} -3\\ -1 \end{bmatrix}+6\mathbf{v}=\begin{bmatrix} 0\\ -16 \end{bmatrix}$	1
	$\mathbf{v} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \mathbf{m} \mathbf{s}^{-1}$	
	Total	3

	-	
5	Speed of P after = v	
	Speed of Q after = w	
	Conservation of momentum $2(4) - 3(1) = 2v + 3w$	2 (1 for each side)
	Restitution $w - v = 1.5$	1
	Solving gives $v = 0.1 \text{ m s}^{-1} \text{ and } w = 1.6 \text{ m s}^{-1}$	1 (both)
	Total	4
6 (a)	$v = \frac{3}{2} \times 10 = 6 \text{ m s}^{-1}$	1
	$\begin{array}{c} V = - \times 10 = 6 \text{ m/s} \\ 5 \end{array}$	
	Total	1
6 (h)	I = mv - mu	
6 (b)	1 - mv - mu	1 evidence of
	I = 0.25(6) - 0.25(-10)	substituting in correct
	1 - 0.20(0) - 0.20(-10)	formula
		1 correct signs (6, –10)
	<i>I</i> = 4 Ns	1 must be positive
	1 - 4 110	
	Total	3
7(a)	Let speed of A after = w in opposite direction to $2u$	
/ (u)	Let speed of B after = v in opposite direction to $2u$	
	Conservation of momentum: $m(-2u) + 2m(4u) = mw + 2mv$	2 (1 each side)
	Simplified gives $6u = w + 2v$,
	, , , , , , , , , , , , , , , , , , ,	
	Restitution $w - v = 6ue$	1
	Subtract equations $3v = 6u - 6ue$	
	Giving $v = 2u(1-e)$	1
	Eliminating <i>v</i> from equations gives	
	v = 2u(1+2e)	1
	Total	5
7(b)	Elastic $e = 1$	1 clearly stated
(3)		
	Speed of $B = 0$, speed of $A = 6u$	1 stated and/or used
	Impulse = $8mu$	1
	Total	3

		T
8 (a)	Let velocity after = $a\mathbf{i} + b\mathbf{j}$	
	Parallel to cushion – velocity remains the same b = 8	1 stated
	Speed after = $\sqrt{a^2 + 8^2}$	1 use of vector magnitude
	$= \sqrt{a^2 + 8^2} = 4\sqrt{5}$	1 forming equation
	a = 4	1 solving for a
	6 <i>e</i> = 4	1 finding e
	$e = \frac{2}{3}$	
	3	
	Total	5
8 (b)	I = mv - mu	1 impulse formula applied perpendicular
	I = 0.2(4) - 0.2(-6)	to edge only 1 correct signs 4, –6
	<i>I</i> = 2 Ns	1
	Total	3
	TOTAL	32